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Data Converters – Performance Limitations associated with Nonideal Properties 
 

Special Instructions for this Experiment 
 Since this experiment will be conducted during the last week of the semester, a 
report for this project will be turned in at the end of the period.  There are 3 procedures 
listed for this experiment.  You are to work sequentially on these procedures for the first 
2 hours and 30 minutes of the lab period.  At that time, you are to inform the TA exactly 
where you are in the measurements.   The last 30 minutes are to be spent preparing a brief 
report which will be collected at the end of the laboratory period.   Grades will be based 
upon how much progress you make on this experiment and on the brief report.  Reports 
will only be accepted at the end of the laboratory period.   If for any reason you can not 
spend the 3  scheduled hours working on this experiment, make arrangements in advance 
with your TA to attend a separate period.    

 
 

Purpose: The purpose of this experiment is to investigate some of the limitations of 
data converters associated with nonideal properties of data converters.  In particular, the 
issue of linearity as characterized by the integral nonlinearity (INL), the differential 
nonlinearity (DNL) and the spectral performance as characterized by the spurious free 
dynamic range (SFDR) will be explored.    
 
Equipment: 
Computer with MATLAB software  
Data from Part 4 and Part 5 of Experiment 9 
 
 
Background: 
      Data converters are widely used as the interface between the analog environment and 
the digital world.  Analog to Digital Converters (ADC) convert physical analog signals to 
digital form and Digital to Analog Converters (DAC) convert digital signals analog form.   
In most applications, it is expected that all information about the input signal to an ADC 
be preserved in the sampled outputs obtained from the ADC.  Correspondingly, it is 
generally expected that the output of a DAC will create the desired analog signal. 
        Existing data converters can come very close to accomplishing these tasks provided 
that the right data converter is used and provided it is used properly.  Even if data 
converters are ideal, some potential problems can occur if the resolution is not high 
enough or if the sampling rates are too low.  In some applications, the phase of the 
sampling clock is also very important.  Inherent limitations associated with the data 
conversion process associated with ideal data converters were considered in the previous 
experiment.       

In this experiment, emphasis will be placed upon the performance capabilities and 
limitations associated with nonideal properties of data converters.   The nonideal 



properties of data converters are analogous to the nonideal properties of operational 
amplifiers  such as finite GB, finite gain, offset voltage, and output saturation considered 
in previous laboratory experiments.    

Linearity is one of the most important properties of data converters in many 
applications.  If the output levels of a DAC are not uniformly spaced or if the transition 
points of an ADC are not uniformly spaced, the data converter will introduce 
nonlinearities into the output of the device that were not present in the input.  These 
nonlinearities can affect the dc transfer characteristics of a system using the data 
converters and in such cases the parameters that the data converter that are of most 
concern are the integral nonlinearity (INL) and the differential nonlinearity (DNL).  They 
can also affect the spectral performance of a system and in such cases the spectral 
performance as characterized by the total harmonic distortion (THD) and the spurious 
free dynamic range (SFDR) of the data converter are of most concern.  In this experiment 
the INL, DNL, and SFDR will be considered. 
 
Integral and Differential Nonlinearity 
  
 The transfer characteristics of an ideal DAC are shown in Fig. 1a.  Note that the 
output for the smallest Boolean input corresponds to XOUT=0 and the output 
corresponding to the largest Boolean input is close to XREF.   More importantly, note that 
all transition points are co-linear.  The two extreme points are called the end points.  A fit 
line that goes through all output points of the DAC is shown in Fig. 1b.  
 
 

  
   (a)      (b) 

Fig. 1 Transfer Characteristics of an ideal DAC 
 
Other ideal transfer characteristics are also possible but the key property of the ideal 
transfer characteristics is that the outs of the DAC all lie on a straight line. 
 The transfer characteristics of a nonideal DAC are shown in Fig. 2a  It can be 
observed that the transfer characteristics do not lie on a straight line.  The linearity 
characteristics of a DAC are often defined relative to a fit line to the actual outputs of the 
DAC.  There are many different fit lines that could be used but the data converter 
community generally used the end-point fit line.  The end-point fit line is the line that 



goes through the two extreme points in the dc transfer characteristics and is shown in Fig. 
2b.  Note this fit line does not go through the origin and  does not have the same slope as 
that of the ideal fit line of Fig. 1b.  The offset from passing through the origin is termed 
an offset error and the change in slope from that of the ideal DAC is termed a gain error. 
 The deviation of the actual output from the end-point fit-line output at code k is 
defined to be the INL at that code, that is,  

( ) ( )k OUT FIT
INL =X k -X k .      (1) 

The overall INL is defined to be the maximum over k of the magnitude of all of the INLk 
terms, that is,  

  { }
1 k

INL max INL
k N≤ ≤

=      (2) 

where N is the total number of DAC input codes.  The location where the deviation is 
maximum in the DAC of Fig. 2a is shown in Fig. 2b and designated as INL.  
The INL is often designated relative to an LSB by dividing the INL by XLSB.  Thus, an n-
bit ADC with a reference of XREF has an LSB of XREF/2n  so the INL becomes 

  
LSB

LSBF

INLINL
X

=       (3) 

where XLSBF is given by 

  
( ) ( )OUT OUT

LSBF

X N -X 1
X =

N-1
    (4) 

The term XLSBF is approximately XREF/2n and the distinction between these two terms 
which are very close is often not made and thus the INL is often expressed as 

  
n

LSB

REF

INLINL 2
X

≅      (5) 

 
Often the LSB subscript is omitted and it is assumed that the reader can correctly 
distinguish between INL and INLLSB from the context in which the specification is given. 
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(a) (b) 
Fig. 2 Transfer Characteristics of  nonideal DAC 

 
The differential nonlinearity, DNL, at code k is defined to be the difference between the 
increase in the output at code k to that of code k-1 and the ideal increase relative to the fit 
line.   That is, 
  ( )k OUT OUT LSBF

DNL =X (k)-X k-1 -X    (6) 
and, as before, it is often assumed that XLSBF=XLSB. 

The overall DNL is defined to be the maximum over all increments of the 
magnitude of the DNLk terms.  That is,  

    { }
1 k

DNL max DNL
k N< ≤

=     (7) 

Since there are N-1 increments, note the lower limit on the range for DNL starts with 
index k=2. 
 The definitions for the INL and the DNL for an ADC are very similar. The 
number of transition points for an ADC is 1 less than the number of Boolean outputs for 
the ADC.  Thus, if an ADC has N Boolean outputs (generally N=2n where n is the 
number of bits of resolution of the ADC) , there will be N-1 transition points.  These 
transition points can be designated as  X1, … XN-1.  The INLk for an ADC is defined to be 
the difference between the kth transition point and the kth uniformly-spaced transition 
point between the first and last transition points.  The uniformly spaced transition points 
between the first and last transition point represent an end-point fit-line to the transition 
points.   If this point is designated as XFIT(k), the INLk can be expressed as  

( ) ( )k TRANS FIT
INL =X k -X k    (8) 

 
 
 
 
 



It can be readily shown that the fit line is given by the expression 

( ) ( ) ( )1
TRANS TRANS

FIT TRANS

X N-1 -Xk-1X (k)=X 1 +
N-2 N-2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (9) 

for 1≤k≤N-1. 
 
 The DNL for a transition point k of an ADC is defined to be the difference 
between the actual increment from transition point k-1 and the uniformly spaced 
increment.  This is approximately given by the expression 

 ( )k TRANS TRANS LSB
DNL X (k)-X k-1 -X≅    (10) 

And, as for the DAC, the DNL for an ADC is defined to be  

 { }
1 k

DNL max DNL
k N< ≤

=      (11) 

 
Equivalent Number of Bits 
 If the transfer characteristics of an ADC do not lie on a straight line, the effects to 
the errors on a circuit using the data converter may be similar to those introduced by an 
ADC with less resolution.  The equivalent number of bits (ENOB) is used to characterize 
the linearity performance of a data converter.  The ENOB that is used to characterize the 
linearity of a data converter should not be confused with the ENOB used to characterized 
the signal to noise ratio (SNR) discussed earlier in this course.   
 Either a DAC or an ADC with n-bits of resolution should ideally be able to 
ideally represent a signal to within  ± ½LSB for any input and should be able to represent 
the signal perfectly at the output points for a DAC or at the transition points for an ADC.  
As such, it will be assumed that  ± ½LSB deviation from the ideal output or form the 
transition points is acceptable for an n-bit data converter but a larger deviation represents 
an effective degradation in resolution.  With this understanding, an n-bit data converter 
with an INL of 1 LSB would be performing as if it were an n-1 bit data converter, one 
with an INL of 2 LSB would be performing at is it were an n-2 bit converter, one with an 
INL of 4 LSB would be performing as if it were an n-3 bit converter, etc.  
Mathematically the ENOB for a data converter with n bits of resolution and an INL of υ 
LSB can thus be expressed as 
  

 10
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1
2

logENOB = n-
log

ν
−       (12) 

 
Spectral Characterization  
 
 Any nonlinearities in the transfer characteristics of a data converter will affect the 
spectral performance of the data converter.   Specifically, if a sinusoidal input is applied 
to the data converter, harmonic components will be present in the output.    
 
 



 For example, if the input to a data converter is 
 

 ( )IN M
X =X sin ωt+θ        (13) 

then the interpreted output will be of the form 
 

( ) ( )
2

OUT 0 1 1
X =A +A sin ωt+θ+ A sin kωt+θ

k k
k

γ γ
∞

=
+ +∑

           (14) 
where Ak is the magnitude of the kth harmonic component of the ouput.  The terms in the 
right summand represent spectral distortion and is comprised of frequency components 
that are not present in the input signal. The THD is generally defined to be the total  
power in the second and higher harmonic terms relative to the power in the fundamental. 
That is, 
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This is often expressed in decibels as 
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    (16) 

Generally the contributions by the higher-order terms is negligible and the sum can be 
made over only the first few terms.   
 A second metric is often used to characterize the spectral performance and that is 
the spurious free dynamic range (SFDR).  The SFDR is defined to be  

 { }
1

k1<k

A
SFDR=

max A
       (17) 

Usually the SFDR is expressed in dB as given by the expression 
  

{ }
1

dB 10

k1<k

A
SFDR =20log
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⎛ ⎞
⎜ ⎟⎜ ⎟
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    (18) 

 
 The THD and the SFDR are generally measured by applying a sinusoidal 
excitation of near full-scale and then taking a large number of samples of the output 
waveform.  From these samples, a Fourier Series representation of the output can be 
obtained and this Fourier Series representation is essentially that given in (14).  The 



following theorem provides a practical method for obtaining the Fourier Series 
representation of a signal x(t) from samples of the signal.    
 
Theorem:  If a periodic signal x(t) with period T=1/f  is band-limited to frequency hf 
and if the signal is sampled N times over an integral number of periods, NP, then 

  ( )m P

2A = X mN +1
N

                          for  0 ≤ m ≤ h-1 

where ( ) 1

1

N

k
X k

−

=
 is the DFT of the sampled sequence ( ) 1

1

N

S k
x kT

−

=
 where TS is 

the sampling period. 
 

 The sampling period is thus given by P
S

T•NT =
N

.  Thus, if x(t) is band-limited 

to hf, the magnitude of the coefficients of the Fourier Series Representation A0, A1, A2, 
A3, … are the magnitudes of the  DFT elements X(0), X(NP+1), X(2NP+1), X(3NP+1), … 
The Fast Fourier Transform (FFT) is a computationally efficient way for calculating the 
DFT, particularly when the number of samples is a power of 2.  The FFT is a routine that 
is available in MATLAB.   
 Generally a prime number of periods of the input signal are sampled.  It is critical 
that the hypothesis of the theorem be satisfied, that is, that the signal is sampled precisely 
over an integral number of periods of the excitation.  Even a very small skew in the 
sampling requirements will cause major problems with using the DFT to obtain the 
Fourier Series coefficients. 
 

 
Part 1 INL ,DNL, and ENOB measurement of DAC 
 
 Determine the INL, DNL and the ENOB of the DAC you designed and tested in 
Experiment 9.   Note that the ENOB can actually be larger than the resolution if the 
output values of the DAC have a very uniform spacing.  
 
Part 2 INL ,DNL, and ENOB measurement of ADC 
 
 Determine the INL, DNL and the ENOB of the ADC you designed and tested in 
Experiment 9.   Note that the ENOB can actually be larger than the resolution if the 
output values of the DAC have a very uniform spacing.  
 
Part 3    Spectral Characterization 
 We do not have the test equipment needed to gather samples from the output of a 
DAC or an ADC with sufficient accuracy to do good spectral characterization of a high-
resolution DAC or ADC at this time.  So, we will assume that you have an ADC with 
XREF   = 1V and a sinusoidal  input signal of angular frequency 1K rad/sec was applied 
with a  0-P amplitude of 0.49V.   Assume the output waveform of the ADC was a 
sampled version of the signal  



XOUT(t)=0.45sin(1000t)+ 0.0002sin(2000t)+0.00005sin(3000t).  
Assume that 4096 samples of this output were taken over precisely 11 periods of the 
input. 

a) What is the THD of the output signal 
b) What is the SFDR of the output signal 
c) Determine the SFDR from Matlab and compare with the results obtained in 

part b) 
d) (Ex cr) Determine the SFDR from Matlab if the sampled signal is 

quantized to the 12-bit level. 
 
 


